sin(A+B)=sinAcosB+cosAsinB
sin(x+2x)=sinxcos2x+cosxsin2x
sin2x = 2sinxcosx
cos2x = (cosx)^2 - (sinx)^2
sin(x+2x)=sinx((cosx)^2 - (sinx)^2)+cosx(2sinxcosx)
we have (sinx)^2 =1- (cosx)^2
sin(x+2x)=sinx((cosx)^2 - (1- (cosx)^2)+cosx(2sinxcosx)
sin(x+2x)=sinx((2cosx)^2 - 1)+2sinx(cosx)^2
sin(x+2x)=2sinx(cosx)^2 - sinx+2sinx(cosx)^2
(cosx)^2 =1- (sinx)^2
sin(x+2x)=2sinx(cosx)^2 - sinx+2sinx(1- (sinx)^2)
sin(x+2x)=2sinx(cosx)^2 - sinx+2sinx- 2(sinx)^3)
cos(x/2)=±(√1+cos(x))/2
We know that cos(π/6)=√3/2.
So
cos(π/12)=(√2+√3)/2 See attached file problem 13