Respuesta :

Question 50.

Given:

cot x = 1

Let's find the solutions of the given equation in the interval: [-2π, 2π].

To solve for the solutions, apply the following steps:

• Step 1.

Take the inverse cotangent of both sides:

[tex]\begin{gathered} x=\cot ^{-1}(1) \\ \\ x=\frac{\pi}{4} \end{gathered}[/tex]

This function is positive in the first and third quadrants.

• Step 2.

To find the next solution add π to the first solution:

[tex]\begin{gathered} x=\frac{\pi}{4}+\pi \\ \\ x=\frac{\pi+4\pi}{4} \\ \\ x=\frac{5\pi}{4} \end{gathered}[/tex]

• Step 3.

Find the period of cotx:

[tex]\frac{\pi}{|b|}=\frac{\pi}{|1|}=\frac{\pi}{1}=\pi[/tex]

The period of the cot function will be:

[tex]x=\frac{\pi}{4}+\pi n,\text{ for any value of n.}[/tex]

Substitute -2 for n and solve:

[tex]\begin{gathered} x=\frac{\pi}{4}+(-2\pi) \\ \\ x=\frac{\pi}{4}-2\pi \\ \\ x=\frac{\pi-8\pi}{4} \\ \\ x=-\frac{7\pi}{4} \end{gathered}[/tex]

Substitute -1 for n:

[tex]\begin{gathered} x=\frac{\pi}{4}+\pi n \\ \\ x=\frac{\pi}{4}+(-1\pi) \\ \\ x=\frac{\pi}{4}-\pi \\ \\ x=\frac{\pi-4\pi}{4} \\ \\ x=-\frac{3\pi}{4} \end{gathered}[/tex]

Substitute 0 for n:

[tex]\begin{gathered} x=\frac{\pi}{4}+\pi n \\ \\ x=\frac{\pi}{4}+0 \\ \\ x=\frac{\pi}{4} \end{gathered}[/tex]

Substitute 1 for n:

[tex]\begin{gathered} x=\frac{\pi}{4}+\pi(1) \\ \\ x=\frac{5}{4} \end{gathered}[/tex]

Therefore, the solutions of the equation in the interval are:

[tex]x=-\frac{7\pi}{4},-\frac{3\pi}{4},\frac{\pi}{4},\frac{5\pi}{4}[/tex]