Respuesta :

The length l of the arc is calculated below as

[tex]\begin{gathered} l=\frac{\theta}{360}\times2\pi r \\ Substitute\text{ }\theta=60^0\text{ and }l=12\text{ into the equation:} \\ 12=\frac{60}{360}\times2\pi\times r \end{gathered}[/tex]

Therefore, the value of r:

[tex]r=11.46[/tex]

To find the area, A, of a sector, the formula is

[tex]\begin{gathered} A=\frac{\theta}{360}\times\pi r^2 \\ Where\text{ } \\ r=11.46\text{ cm \lparen two decimal places\rparen} \end{gathered}[/tex]

Substitute for r

[tex]\begin{gathered} A=\frac{60}{360}\times\pi\times(11.46)^2 \\ A=68.76\text{ cm}^2\text{ } \end{gathered}[/tex]

Hence,

The area of the sector is approximately is 68.76cm²

The perimeter of the sector is given by:

[tex]length\text{ of arc}+r+r[/tex]

Therefore, the perimeter is given by:

[tex]12+2\times11.4615\approx34.92cm[/tex]

Hence,

The perimeter of the sector is approximately 34.92cm