Answer:
x=1 or x=-6.
Explanation:
Given the quadratic equation:
[tex]2x^2=-10x+12[/tex]First, reorder the terms as follows:
[tex]\begin{gathered} 2x^2+10x-12=0 \\ 2(x^2+5x-6)=0 \end{gathered}[/tex]Since 2 cannot equal zero, it implies:
[tex]x^2+5x-6=0[/tex]Next, factorize the result obtained above.
[tex]\begin{gathered} x^2+6x-x-6=0 \\ x(x+6)-1(x+6)=0 \\ (x-1)(x+6)=0 \\ x-1=0\text{ or x+6=0} \\ x=1\text{ or x=-6} \end{gathered}[/tex]The solutions to this equation are x=1 or x=-6.