Given the area of the circle as shown below
[tex]A=\pi r^2[/tex]a) To find the area of the flower bed, we will find the area of the circle and divide the result by 4, since one flower bed is a quarter of the circle.
[tex]\begin{gathered} A=\pi r^2 \\ \pi=3.14 \\ r=5ft \end{gathered}[/tex][tex]\begin{gathered} A=3.14\times5^2 \\ A=3.14\times25 \\ A=78.5ft^2 \end{gathered}[/tex]Hence,the area of a flower bed is
[tex]\begin{gathered} A_{f\Rightarrow}\frac{A}{4}=\frac{78.5ft^2}{4} \\ \\ A_f=19.625ft^2 \end{gathered}[/tex]b) Given that the rate of fertilizer used is 1 cup per 15 square feet, thus, it will take x cups for 19.625 square feet. To find x, we will have:
[tex]\begin{gathered} 1\rightarrow15ft^2 \\ x\rightarrow19.625ft^2 \\ \text{cross multiply} \\ 15xft^2=19.625ft^2 \\ x=\frac{19.625}{15} \\ x=1.308\text{cups} \end{gathered}[/tex]Hence, they will need 1.308 cups for the flower bed.