In this problem, we have the following functions;
[tex]\begin{gathered} f(x)=x^2+2x, \\ g(x)=1-x^2. \end{gathered}[/tex]We must find the functions:
0. (f + g)(x)
,1. (f - g)(x)
,2. (f g)(x)
,3. (f/g)(x)
(1) (f + g)(x)
This function is given by:
[tex](f+g)(x)=f(x)+g(x)=(x^2+2x)+(1-x^2)=2x+1.[/tex](2) (f - g)(x)
This function is given by:
[tex](f-g)(x)=f(x)-g(x)=(x^2+2x)-(1-x^2)=2x^2+2x-1.[/tex](3) (f g)(x)
This function is given by:
[tex](f\cdot g)(x)=f(x)\cdot g(x)=(x^2+2x)\cdot(1-x^2)=x^2-x^4+2x-2x^2=-x^4-x^2+2x.[/tex](4) (f/g)(x)
This function is given by:
[tex](f/g)(x)=\frac{f(x)}{g(x)}=\frac{x^2+2x}{1-x^2}.[/tex]Answer(1)
[tex](f+g)(x)=f(x)+g(x)=2x+1[/tex](2)
[tex](f-g)(x)=f(x)-g(x)=2x^2+2x-1[/tex](3)
[tex](f\cdot g)(x)=f(x)\cdot g(x)=-x^4-x^2+2x[/tex](4)
[tex](f/g)(x)=\frac{f(x)}{g(x)}=\frac{x^2+2x}{1-x^2}[/tex]