I got half right, but I need help with the other half.

The distance between points (x₁, y₁) and (x₂, y₂), is given by the formula:
[tex]d_{12}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.[/tex]We have the points:
• A = (0, 6),
,• B = (6, 6),
,• C = (6, 0),
,• D = (0, 0).
1) Using the formula above with:
• A = (x₁, y₁) = (0, 6),
,• B = (x₂, y₂) = (6, 6).
We get:
[tex]AB=6.[/tex]2) Using the formula above with:
• B = (x₁, y₁) = (6, 6),
,• C = (x₂, y₂) = (6, 0).
We get:
[tex]BC=6.[/tex]3) Using the formula above with:
• C = (x₁, y₁) = (6, 0),
,• D = (x₂, y₂) = (0, 0).
We get:
[tex]CD=6.[/tex]4) Using the formula above with:
• D = (x₁, y₁) = (0, 0),
,• A = (x₂, y₂) = (0, 6).
We get:
[tex]DA=6.[/tex]Answer• AB = 6
,• BC = 6
,• CD = 6
,• DA = 6
Since ABCD has four right angles and four straight sides, it is a square.