Respuesta :

Explanation

The distance between points (x₁, y₁) and (x₂, y₂), is given by the formula:

[tex]d_{12}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.[/tex]

We have the points:

• A = (0, 6),

,

• B = (6, 6),

,

• C = (6, 0),

,

• D = (0, 0).

1) Using the formula above with:

• A = (x₁, y₁) = (0, 6),

,

• B = (x₂, y₂) = (6, 6).

We get:

[tex]AB=6.[/tex]

2) Using the formula above with:

• B = (x₁, y₁) = (6, 6),

,

• C = (x₂, y₂) = (6, 0).

We get:

[tex]BC=6.[/tex]

3) Using the formula above with:

• C = (x₁, y₁) = (6, 0),

,

• D = (x₂, y₂) = (0, 0).

We get:

[tex]CD=6.[/tex]

4) Using the formula above with:

• D = (x₁, y₁) = (0, 0),

,

• A = (x₂, y₂) = (0, 6).

We get:

[tex]DA=6.[/tex]Answer

• AB = 6

,

• BC = 6

,

• CD = 6

,

• DA = 6

Since ABCD has four right angles and four straight sides, it is a square.