Respuesta :

12√3

1) To find out the Lateral Area of this pyramid we need to calculate the area of those three equilateral triangles.

[tex]\begin{gathered} Lateral_{Area}=3(s^2\frac{\sqrt[]{3}}{4})=3(16\frac{\sqrt[]{3}}{4}) \\ L=3\cdot4\sqrt[]{3} \\ L=12\sqrt[]{3} \end{gathered}[/tex]

2) Hence, the Lateral Area of that pyramid is 12√3