Respuesta :
Answer:
810 cm^3
Step-by-step explanation:
Since,the l(length) b(breadth) & h(height) of the cuboid bear the ratio 5 : 3 : 2 ,we could assume it as:
- l = 5z
- b = 3z
- h = 2z
We know that,
- Cuboid ( total surface area)= 2lb+2lh+2hb cubic units
So substitute the dimensions we assumed:
- We could write it as;
[tex] \rm \: Total \; Surface\; area \: of \: the \; cuboid = 2(5z \times 3z + 3z \times 2z + 2z \times 5z[/tex]
[tex] \implies \rm \: 279 = 31 {z}^{2} [/tex]
- Find z
[tex] \rm \implies {z}^{2} = \cfrac{279}{31} [/tex]
[tex] \rm \implies {z}^{2} = 9[/tex]
[tex] \implies \rm \: z = \sqrt{9} [/tex]
[tex] \rm \implies \: z = \sqrt{3 \times 3} = 3[/tex]
Hence, according to the formula,
- Cuboid V = lbh
We got the dimensions of the cuboid, i.e.
Then, solve.
- Cuboid V = lbh
- 15 cm * 9 cm * 6 cm
- 810 cm^3
Hence,the volume of the cuboid will be 810 cm^3